
Steve Maassen

Supervised Learning of the

Safe set in Autonomous

Driving

Semester Thesis

Automatic Control Laboratory
Swiss Federal Institute of Technology (ETH) Zurich

Supervision

Alexander Liniger
Prof. Dr. John Lygeros

June 2017





Contents

Abstract iii

Nomenclature v

1 Introduction 1
1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Existing Work 3
2.1 Viability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Discrete Viability Theory . . . . . . . . . . . . . . . . . . 3
2.1.3 Viability Kernel Algorithm . . . . . . . . . . . . . . . . . 3

2.2 Autonomous RC Racing . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Car Model . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Constant velocity trims . . . . . . . . . . . . . . . . . . . 6
2.2.3 Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Viability Kernel for the Whole Track . . . . . . . . . . . . 8

3 Methods 9
3.1 Adapted Viability Kernel Algorithm . . . . . . . . . . . . . . . . 9

3.1.1 Curve Definition . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Domain Extension . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 Boundary Uncertainty . . . . . . . . . . . . . . . . . . . . 10
3.1.4 Resulting Algorithm . . . . . . . . . . . . . . . . . . . . . 11

3.2 Choice of machine learning tools . . . . . . . . . . . . . . . . . . 11
3.2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . 12
3.2.2 Support Vector machines . . . . . . . . . . . . . . . . . . 13
3.2.3 Main Concepts of C-SVM . . . . . . . . . . . . . . . . . . 13
3.2.4 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.5 The Kernel Trick . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.6 Kernel Approximation . . . . . . . . . . . . . . . . . . . . 16

3.3 Definition of the Curve Library . . . . . . . . . . . . . . . . . . . 16
3.3.1 Parameter Sensitivity . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Feature Selection and Parameter Definition . . . . . . . . 19
3.3.3 Reducing the Number of Training Points . . . . . . . . . 20
3.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



3.3.6 Real Time Implementation . . . . . . . . . . . . . . . . . 22

4 Results 25
4.1 SVM of one Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Single Mode SVM . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusion 31



Abstract

Guaranteeing safety in autonomous driving applications is a challenging task,
due to the complexity of the models and the road constraints. Recent work
showed that for autonomous racing where the road/track constraints are known
a-priori the problem can be tackled by using a simplified model and viability
theory. For this case the viability kernel describes all safe states. However,
if the road constraints are not known a-priori this method can not be used
due to the long computation times of the viability kernel algorithm. In this
thesis we study the use of supervised learning to predict the viability kernel
for an arbitrary curve. Therefore, a support vector machine (SVM) is trained
with a library of precomputed turns of di↵erent radii and opening angles. We
demonstrate this approach by considering a library of curves motivated by the
ORCA project and show that it is indeed possible to learn a general curve using
a SVM. Finally, it is shown that the trained SVM classifier is able to predict
the viability kernel of yet unseen curves.
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Nomenclature

Symbols

X Absolute X coordinate [m]

Y Absolute Y coordinate [m/s]

' Absolute orientation [rad]

v

x

Longitudinal velocity [m/s]

v

y

Lateral velocity [m/s]

! Yaw rate [rad/s]

� Steering angle [rad]

F

i,j

Force at tire i and in direction j [N]

m mass of the car [kg]

I

z

moment of inertia in z [kg · m2]

l

f

distance from CoG to front tire [m]

l

r

distance from CoG to rear tire [m]

v̄

i

stationary velocity [m/s]

R curve radius [m]

↵ curve opening angle [m]

w

t

stationary velocity [m]

K

j

j

th iteration of the viability kernel

l

aug

augmentation length [m]

l

ext

augmentation length [m]

'

w

final orientation window size [rad]

'

d

curve direction angle at end or start [rad]

d

grid

grid resolution [m]

x

i feature vector of sample i

x

i

j

j

th entry of the feature vector of sample i

y

i label of sample i

w SVM weight vector

⇠

i

slack variable of contraint i

N

s

number of training samples

d

i

dimension i

�(x) SVM kernel function

� SVM kernel parameter

v



C C-SVM cost parameter

Indicies

x Longitudinal direction

y Lateral direction

f Front wheel

r Rear wheel

k Time step k

Acronyms and Abbreviations

SVM Support Vector Machine

ANN Artificial Neural Network

MPC Model Predictive Controller

PWM Pulse Width Modulation

QP Quadratic Program

ORCA Optimal RC Autonomous Racing

CoG Center of Gravity

ETH Eidgenössische Technische Hochschule

RBF Radial Basis Function



Chapter 1

Introduction

The research area of Control Design for autonomous driving has seen a lot of
attention in the last few years. Companies like Tesla or Goggle are pushing
towards a driving situation where more and more duties and responsibilities are
given to the car itself. Obviously, safety plays a major role and is one of the
key reasons why autonomous driving is not fully established today, especially
since it is hard to guarantee safety at all times. This could be established by
guaranteeing that the autonomous car always applies safe inputs which would
guarantee that it never violates constraints, like being on the track. However,
this is a di�cult problem that has not yet been solved for an arbitrary road
system and environments that are changing continuously. When considering
autonomous racing where the car’s operating point is on the edge of tire fric-
tion the problem becomes harder due to non-linearities but at the same time,
the track is often known in advance so it is possible to tackle the safety problem.

One approach to establish safety is viability theory, where for given dynamics
,and input and state constraints, viability theory allows to calculate a viable
set in the state space where every point is guaranteed to have an input that
drives the system to another safe state. Hence by keeping the dynamics in the
so called viability kernel, safety can be guaranteed. The main issue with the
viability kernel is that, in most cases, it can not be calculated analytically. This
is why the viability kernel is often calculated by discretizing the state space,
and by using the viability kernel algorithm. The detailed functioning of the
algorithm and the adaptations made for this problem is described in Section
2.1 . The main problem here is that, due to the gridding, the algorithm su↵ers
from the curse of dimensionality which limits the number of dimensions of the
system and the discretization exactness.

1.1 Goals

The goal of this semester project is to investigate if the viability kernel can be
approximated with the help of supervised learning. By calculating the viability
kernel for a library of curves with the help of an adapted viability algorithm
we try to create a data set that can be used to train a classifier. This should
allow to predict the viability kernel for an arbitrary curve or a sequence of road

1



2 1.2. Related Work

elements and no longer only for a known track like in autonomous. At the same
time computation time for evaluation could be drastically improved since all the
training could be done in advance. Concretely this thesis aims to make a Proof
of Concept of this principle for the autonomous RC Racing ORCA project [1]
established by the automatic control lab (Ifa) at ETH Zurich.

1.2 Related Work

Some research has been done where supervised learning was used to either cal-
culate or learn the viability kernel for specific situations. In [7] a support vector
Machine (SVM) was used to adapt the classical viability kernel algorithm de-
scribed in Section 2.1. After every iteration step, they approximated the discrete
viability kernel with a continuous SVM. In the next step, while evaluating the
di↵erence inclusion, instead of checking an intersection with the discrete viabil-
ity kernel iterate, the before trained SVM iterate is used. This was applied to
a bike riding problem in [6] where they included a multi resolution grid to their
method.

In [11], viability theory in combination with SVM’s was used to investigate ac-
tive safety during cornering maneuvers. The viability kernel for one specific
maneuver was calculated using the viability kernel algorithm and in a second
step the kernel was approximated using an SVM classifier. However, this only
concerned one specific situation and the SVM was merely used to obtain a con-
tinuous set rather than a discretized grid.

These works show, how SVMs can be used to get a more accurate calculation or
a continuous version of the viability kernel but it di↵ers from our approach which
aims at classifying unknown curves and tracks. To the authors best knowledge,
this has not attempted yet in the existing literature.



Chapter 2

Existing Work

2.1 Viability Theory

2.1.1 Main Idea

Viability theory is a field of mathematics that is often used when dealing with
dynamical systems with state and input constraints. It allows to prove safety
for a given system and a given initial condition. At the core of viability theory
stands the viability kernel which describes the subset of all states that can be
considered as “safe” or viable. If at a certain point in time your system is in
this set, there exists an input that can drive it to another point in the viability
kernel. We will use this Section to briefly describe the mathematical concepts
of viability theory and the resulting viability kernel algorithm.

2.1.2 Discrete Viability Theory

Discrete viability theory addresses the question: for which initial conditions does
there exist a solution to a di↵erence inclusion, which stays within a constraint
set forever [3]? For the following, consider a controlled discrete-time system
x

k+1 = f(x
k

, u

k

), where x 2 Rn is the state, u 2 U ⇢ Rm is a control input and
f : Rn ⇥ U ! Rn is a continuous function describing the dynamics. One can
write this system as a di↵erence inclusion as the following

x

k+1 2 F (x
k

), with F (x) = {f(x, u) | u 2 U} (2.1)

2.1.3 Viability Kernel Algorithm

Definition 1. A set D 2 Rn is a discrete viability domain of F if F (x)\D 6=
; for all x 2 D. The discrete viability kernel of a set K ⇢ Rn under F,
denoted by Viab

F

(K), is the largest closed discrete viability domain contained
in K. [2]

The viability kernel can be calculated with the following viability kernel algo-

3



4 2.2. Autonomous RC Racing

rithm

K

0 = K,

K

n+1 = {x 2 K

n | F (x) \K

n 6= ;} (2.2)

Then the discrete viability kernel is defined by the following proposition

Proposition 1. [2] Let F : Rn ! Rn be a upper-semicontinuous set-valued
map with closed values and let K be a compact subset of Dom(F )

Viab
F

(K) =
n\

i=0

K

n (2.3)

Since the algorithm requires operations on arbitrary sets which is not imple-
mentable, one has to use a discretized grid instead of a continuous state space.
In order to get an approximation of the viability kernel in the case of discretiza-
tion, one has to consider expansion of the resulting set valued-map [2]. For
simplicity, details are omitted here and can be read in [2] which further deals
about inner approximations.

2.2 Autonomous RC Racing

This thesis originates from the ORCA (Optimal RC Racing) [1] project at ETH,
which consists of developing a testbed for autonomous racing. Although this
thesis will not include experimental tests on the before mentioned project, it
clearly aims to show that a real-time application could be possible and could
be tested on this setup. The project consists of 1:43 dnano RC cars racing
autonomously around a 3x3 meter track (fig 2.1). A vision system serves as
sensor to estimate the state of the cars, which gets distributed to standalone
controller PCs, which then calculate an optimal input. This is then send to
the cars via bluetooth, which execute the input. In the following sections the
research that has been done in [8] is presented, since it is needed for this thesis.

Figure 2.1: Track and Kyosho dnano cars used in the experimental setup [8]



Chapter 2. Existing Work 5

2.2.1 Car Model

For the model of the RC car, a nonlinear bicycle model (Figure 2.2), using the
Pacejka tire model [4], is chosen. This model is suited for the application of au-
tonomous racing, since it captures important dynamics such as saturation of the
nonlinear tire force. This is essential, since, other than in normal autonomous
driving where speeds are usually low, in the case of autonomous racing speeds
and tire forces are as high as possible. This model is also suited for the case
where the tire force exceeds the friction force (drifting). The states X, Y , and

Figure 2.2: Bicycle Model [8]

' describe the absolute position of the car measured in the inertial coordinate
frame. Further, v

x

, v
y

and ! correspond to the forward velocity, lateral velocity
and angular velocity respectively and are measured in the local coordinate frame
attached to the car at the center of gravity (CoG). The steering angle � and
a pulse width modulation (PWM) act as inputs to the system. The complete
equations of motion can be seen in (2.4).

Ẋ = v

x

cos(')� v

y

sin('),

Ẏ = v

x

sin(')� v

y

cos('),

'̇ = !, (2.4)

v̇

x

=
1

m

⇣
F

r,x

(v
x

, d)� F

f,y

(v
x

, v

y

,!, �) sin(�) +mv

y

!

⌘
,

v̇

y

=
1

m

⇣
F

r,y

(v
x

, v

y

,!)� F

f,y

(v
x

, v

y

,!, �) cos(�) +mv

x

!

⌘
,

!̇ =
1

I

z

⇣
F

f,y

(v
x

, v

y

,!, �)l
f

cos(�)� F

r,y

(v
x

, v

y

,!)
⌘
l

r

,
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where F
r,x

(v
x

, d) is the force of the drive train, F
r,y

(v
x

, v

y

,!) and F

f,y

(v
x

, v

y

,!, �)
are the lateral forces at the tires given by the Pacejka tire model [4] depicted in
equations (2.5).

F

r,x

(v
x

, d) = (C
m1 � C

m2vx)d� C

r

� C

d

v

2
x

,

F

r,y

(v
x

, v

y

,!) = D

r

sin(C
r

arctan(B
r

,↵

r

)), (2.5)

F

f,y

(v
x

, v

y

,!, �) = D

f

sin(C
f

arctan(B
f

,↵

f

)),

with ↵

r

= arctan

✓
'̇l

r

� v

y

v

x

◆
and ↵

f

= arctan

✓
'̇l

f

� v

y

v

x

◆
+ �.

Here, B, C, and D are parameters used to tune a semi-empirical curve. Further,
m is the mass of the car, l

r

and l

f

the distances to the rear and front tire
respectively, and I

z

is the moment of inertia around the Z axis.

2.2.2 Constant velocity trims

In order to simplify the nonlinear dynamics, the di↵erential equations describing
the velocities are simplified by assuming stationary velocities. Therefore a grid
of modes (e.g. triplet of constants v̄

x

, v̄
y

, and !̄) is used to create a hybrid like
system. These stationary velocities can be found by setting the accelerations to
zero and picking di↵erent pairs of forward velocities v

x

and steering angles �. A
fact to consider here is that this includes modes where the relation v

y

/v

x

exceeds
the no slip constraint resulting in “drifting” modes. By using this simplification
the still nonlinear kinematic part of the the model (e.g. equations 1-3 in (2.4))
can be solved analytically. When defining a time T

pp

for which the analytical
solution is integrated we get the so called trims which can be seen as steady
state arc trajectories. The di↵erence equation needed for the viability algorithm
can then be obtained as follows

x

k+1 = x

k

+
v̄

x

!̄

�
sin(!̄T

pp

+ '[0])� sin('[0])
�

+
v̄

y

!̄

�
cos(!̄T

pp

+ '[0])� cos('[0])
�
,

y

k+1 = y

k

+
v̄

y

!̄

�
sin(!̄T

pp

+ '[0])� sin('[0])
�

(2.6)

� v̄

x

!̄

�
cos(!̄T

pp

+ '[0])� cos('[0])
�
,

'

k+1 = '

k

+ !T

pp

,

m

k+1 = u

k

u

k

2 U(m
k

),

where v̄

x

(m), v̄
y

(m) and !̄(m) are defined by the mode m which is the current
velocity state of the system. The input of the system then boils down to choosing
the mode for the next time step from U(m

k

). The latter input set consists of up
to 27 modes that are near to m

k

(e.g. that can be reached quickly enough from
m

k

). This resulting state automata is illustrated in Figure 2.3 where the current
mode is 4, and the arrows indicate the possible choices for the next mode.
At the end, for every current mode, we get a collection of input trims which
is used by the controller as described in Section2.2.3. Figure 2.4 shows the car
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Figure 2.3: Schematic drawing of allowed transitions from v̄(4) to other velcoity
points [9].

with ' = ⇡/2 on a straight piece of track and the trajectories resulting from the
modes m = 28� 38.

-0.2 -0.1 0 0.1 0.2

x [m]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

y 
[m

]

Figure 2.4: Car on track, plotted with a selection of trims

2.2.3 Control Scheme

In previous work, a two level hierarchical controller was designed and imple-
mented, which consists of a high level path planner and a low level reference
tracking model predictive control (MPC) [8]. The hight level path planner gen-
erates all allowed trajectories of the before mentioned model, and discards all
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trajectories which leave the constraints. Of all the feasible trajectories the one
with the largest progress is selected. 2.3).
In order to measure the progress of planned trajectory, the endpoint of each
trim is projected onto the middle line. In the implementation of [8], the path
planner could use two consecutive trims to construct an optimal trajectory. This
results in a more foreseeing trajectory but is obviously computationally more
expensive since the computation time grows exponentially with the number of
consecutive trims. As before mentioned, the path planner can also initiate drifts
when being in a mode that is “near” a drift mode and allows a transition into it.

The low level controller then gets the optimal trajectory from the path planer
and solves an MPC problem in order to track the chosen trim as accurate as
possible. In order to solve the nonlinear control problem, local convex approxi-
mations are used to build QPs.

2.2.4 Viability Kernel for the Whole Track

In previous research, the concept of the viability theory has been applied to the
ORCA project [10]. The viability kernel algorithm has been used to calculate
the kernel for the whole 3x3m track which took up to 397.674 seconds depending
on the grid resolution an the exact algorithm used. The kernel was included in
the higher level controller, by not only discarding all trajectories which leave
the track but also the ones which leave the viability kernel. This reduced online
computation time. Results showed that due to the reduced computation time,
the prediction horizon could be extended and the controller generally was more
foreseeing and produced better trajectories.



Chapter 3

Methods

3.1 Adapted Viability Kernel Algorithm

In order to generate a library of curves as training data for the supervised
learning, the discrete viability algorithm from 2.1.3 has to be adapted. Firstly,
the standard algorithm needs a closed set as for example a closed circuit, a single
curve, however, has a beginning and an end, which are both open. Further,
everything that comes after and before the turn is uncertain and undefined and
should ideally not contribute or influence the learning data. In Section 3.1.2 we
will present a solution to this problem and an adaptation of the algorithm. In
Section 3.1.3 we will come up with a method on how to handle the uncertainty
on the boundaries of the curve, meaning the start and the end.

3.1.1 Curve Definition

To begin with, we define a curve by it’s curve radius and opening angle. The
cartesian coordinate system has it’s origin in the middle of the turn at the
starting point. For convenience we assume in the following that the turn always
starts by going in positiv y-direction and that the middle line is tangential to
the y-vector (Figure 3.1 left). Since the viability kernel algorithm checks every
angle ' we do not attach an intrinsic direction to the curve. Therefore we only
consider curves going to the right. A left turn can then be seen as a right
turn traveled through in reverse. Note, that a polar coordinate system with the
origin in the center of the turn seems like another valid choice, especially when
thinking about the later feature definition. However, in several tests we saw
that the choice of a polar coordinate system deteriorates the smoothness and
continuity of the learned viability kernel, which is why we rejected it. The curve
width w

t

is chosen so that it matches the track width of the ORCA project (e.g.
30 cm).

3.1.2 Domain Extension

With the curve definition in Section 3.1.1 we encounter one major problem when
trying to feed it to the viability kernel algorithm. Let’s assume we would define
the initial set K

0 as the raw curve (e.g. green region in Figure. 3.1 on the
right). The algorithm would see traversing the start or end line of the curve as

9



10 3.1. Adapted Viability Kernel Algorithm

Figure 3.1: left: curve definitions; right: curve extetntion

constraint violation. Therefore, all states that have inputs, which would allow
the car to make the turn but exit it at the end, would be marked as unsafe. In
other words, the car would be forced to stop before exiting the curve in order to
be safe. Since this is clearly not what we would like to learn with the machine
learning tool, we came up with an extension of the curve in both, start and end
directions. Ideally, the solution would be to extend the curve ends into infinity,
which would result in a unbounded set not allowed in theory (and practice).
However, choosing a finite but long enough extension is su�cient since the car
can stop in a finite distance. Therefore when the total extension length (eg.
l

ext

+ l

aug

in Figure 3.1 on the right) is chosen large enough we should get the
same result as in the case of infinite extension.

Secondly, even with a finite extension, the number of points that would be
obtained by griding the curve in x and y is still unreasonably big. Further, the
part of the viability kernel on the straight extension would carry little, to no,
information that would be learned. Therefore we split the extension into two
regions defined by l

aug

and l

ext

. In the the augmented region K

0
aug

(orange
region in Figure 3.1 on the right) the viability algroithm is still evaluated. In
the extended region K

0
aug

(yellow region in Figure 3.1 on the right), merely
constraints are enforced. This allows us to reduce the number of points fed to
the algorithm to a reasonable number of roughly 200 on average with a 0.04 m
grid resolution. In K

0
aug

, not only the track constraint is verified but also the
resulting orientation of the car is constrained. This is done by defining an angle
window with an opening of '

w

around the angle of direction '

d

of the curve
resulting in ['

d

� '

w

,'

d

� '

w

]. If the car reaches the extension region from a
certain state with a certain input, the orientation of the car at the end of the
maneuver has to lie in this angle window in order for the input to be marked
as feasible. This rejects situations where the car would be unable to recover in
a future step.

3.1.3 Boundary Uncertainty

The main goal of this thesis is to find a way to calculate the viability kernel
algorithm for an arbitrary sequence of curves. This means that the viability
kernel for one curve should be learned without any assumptions on the next
part of the track. This is not an easy task since the kernel of the first turn
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is clearly influenced when another curve follows directly. In order to somehow
handle this uncertainty, we adapted the curve extension from 3.1.2 by tightening
the track directly after the end of the curve. This is done with the help of an
error function also known as Gauss error function

erf(x) =
1p
⇡

Z
x

�x

e

�t

2

dt (3.1)

As seen in Figure 3.2, the end of the inner and outer borders of the curve is
patched with the error function and then extended linearly. This way we keep
the car ”safer” by forcing trajectories into the middle of the track in order to
be categorized as safe. Consequently the car would have more room to react to
sudden changes like an immediate next turn.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3.2: left: curve with error fucntion; right: curve with grid

We are then left with the final definition of a curve which is gridded in x and
y with a grid resolution d

grid

which is shown in Figure 3.2 on the right for
R = 0.35 m, ↵ = 2⇡/3, l

aug

= 0.2 m, l
ext

= 0.6 m, and d

grid

= 0.04m. For
the error function parameters, we used a narrowing of 35 % over a tangential
distance of 0.2 m. All this parameters are further investigated in Section 3.3.1..

3.1.4 Resulting Algorithm

Algorithm 1 describes how the viability kernel is calculated with our definition.
One remark that could be made, is that, in the real algorithm, not only the
endpoint of the di↵erent trims is checked but it is guaranteed that the trims do
not exit the track in the middle while re-entering at the end. The while loop
usually terminates in 10 to 15 iterations for the curves we used and returns the
training data for the supervised learning. A selection of calculated kernels can
be seen in Figure 3.3.

3.2 Choice of machine learning tools

Machine learning is a trending topic for several di↵erent applications, ranging
from life sciences over economics to engineering. The main idea is to use a large
training set to learn a so called classifier, which, after training, can predict a
label when presented with a new sample that is not included in the training set.
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Algorithm 1: Adapted Viability Kernel Algorithm

Data: K0
algo

= K

0 +K

0
aug

, K0
ext

Result: K1
algo

begin
n � 1
K

n

algo

 � ;
while K

n

algo

6= K

n�1
algo

do

for every point p 2 K

n�1
algo

do

for every possible input u do
endpoint=Di↵erenceEquation(p,u)
if endpoint 2 K

0
algo

then

if endpoint 2 K

n�1
algo

then

K

n

algo

 � K

n

algo

[ p

else if endpoint 2 K

0
ext

then
if orientatiion 2 angleWindow then

K

n

algo

 � K

n

algo

[ p

n  � n+ 1
K

n

algo

 � ;
K

1
algo

 � K

n�1
algo

This is done by estimating relationships between variables, often called features,
which is commonly known as regression. There are several approaches on how
to create such a classifier or regressor. The most recent success has been made
with Neural Networks and Support Vector Machines which are briefly explained
in the following Sections.

3.2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a classifier whose methodology is based
on the functioning of neurons in a biological brain. The main idea is that a
selection of inputs are used as triggers to a first layer of neurons. Every neuron
or a combination of several neurons then serves as an input for a number of
second layer neurons. A neuron only fires when it’s input value is high enough
and the output can be weighted by adjustable weights w

ij

. Figure 3.4 illustrates
this principle and shows how the output is dependent of some combination of
the inputs and the weights. The training samples for which the outputs are
known is then used to determine the weights in an optimal manner so that as
few as possible samples are misclassified. In our case, the training set is the
set of grid points of the curve and the output is either safe (1) or unsafe (0).
We tried to implement an ANN for our problem but found out that a Support
Vector Machine resulted in less training time and comparable or better results
which is why we will not go more into detail on this topic.
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Figure 3.3: a selection of di↵erent calculated viability kernels for given curve,
mode and orientation. Red are safe points, blue are unsafe points

3.2.2 Support Vector machines

Support Vector Machines (SVM) have seen a lot of success in recent years and
have become one of the favorite tools to learn classifiers. The main idea is
that you want to divide a set of training points into one (in case of single
class classification) or multiple regions. This is done by creating a separating
hyperplane that is determined by an optimization problem.

3.2.3 Main Concepts of C-SVM

Let’s define a sample i as (xi

, y

i) where x

i 2 Rn is the feature vector with n

features and y

i is the label. As features, we understand values assigned to the
sample that have an influence on the outcome of y. The goal of the training is
to find a hyperplane defined by f(x) = 0 where

f(xi) = hw, xii+ b (3.2)

that separtes the data set into two classes. h·, ·i denotes the scalar product
of two vectors, w 2 Rn is a weight vector, and b is a constant o↵set. f(x)
takes on positive values if the predicted label is 1 and negative values when
the predicted value is -1. Let’s consider a n-dimensional feature space, with
samples i x

i = [xi

1, ..., x
i

n

] and two classes (e.g. positives and negatives). As
seen in Figure 3.6, illustrated for n = 2, we try to find the function f(x), in this
case representing a line (w1x1 +w2x2 + b = 0), which separates the two regions
by maximizing the margin 2/kwk to the nearest points. The SVM problem can
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Figure 3.4: illustration of an artificial neural network

Figure 3.5: illustration of the SVM concept

then be solved by solving the minimization problem

min
1

2
w

T

w + C

N

sX

i=1

⇠

i

s.t. y

i

f(xi) � 1� ⇠

i

(3.3)

⇠

i

� 0, i = 1, ..., N
s

where ⇠

i

is a slack variable associated to constraint or sample i, and N

s

is the
total number of samples. C is a tuning parameter that can be used to punish
outliers. In other words, by increasing C a hard constraint violation (or an
outlier) adds more cost to the cost function. The minimization variable is the
weight vector w and the constant b. In the following, every time we refer to
SVM, we mean C-SVM.
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Stochastic Gradient Descent SGD

The C-SVM method performs well when the number of samples is not too big
(e.g.  1’000’000). If the sample size is larger, other optimization methods are
often used. One of these is Stochastic Gradient Descent. Instead of calculating
the true gradient of the optimization function, SGD approximates it by only
looking at one sample at the time. Since we have a large number of samples (e.g.
up to 500’000’000 points) we looked into the benefit of this method. However,
due to the high density of information in our specific problem, meaning we have
no outliers and every point on the edge of the safe region is needed, SGD did not
perform well. Hence further mathematical details on this method is omitted.

3.2.4 Normalization

Something that needs to be done almost every time when handling a classifi-
cation problem is normalization of the data. This is done in order to prevent
numerical issues as well as unbalanced sensitivity in di↵erent feature dimen-
sions. We applied hard normalization to all our feature dimensions where, first
the maximum and minimum of each feature dimension in the training data set
is determined, this values are then used to scale all training data points in be-
tween -1 and 1. For predicting a new sample, it’s features are normalized with
the help of the transformation used in the training phase.

3.2.5 The Kernel Trick

Pure SVM is a linear method that can only use linear manifolds to separate
the data into two regions. Sometimes however, the data is not separable in this
manner and so we can use the kernel trick, which allows us to handle nonlinear
boundaries. the main idea is to expand the feature space in a higher dimension
in order to separate the data linearly. In Figure 3.6, this concept is illustrated
by taking a 2D feature space and expanding into a 3D feature space. This way
the two classes can be separated and a nonlinear boundary in the actual feature
space is possible.

Figure 3.6: illustration of the Kernel methods for a 2D feature space

This transformation is done by using a so called kernel function

� : Rd1 ! Rd2
, x! �(x) (3.4)
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where as before mentioned d1 < d2. In this thesis, we used a Radial Basis
Function (RBF) also called a gaussian kernel (see eq. (3.5)), which is commonly
used and usually leads to good results for a large set of problems. (xi

, x

j) is a
pair of features and � is a tuning parameter that influences the ”smoothness”
(e.g. the maximum curvature).

�(xi

, x

j) = exp(��kxi � x

jk2) (3.5)

3.2.6 Kernel Approximation

One of the main drawbacks of using kernel methods is that it does not scale
very well with large data sets, since the feature space grows with the number of
samples. Numerically spoken, for m samples with a feature dimension d1 = 1, a
(m⇥m) matrix has to be evaluated. When running into computational limits
one can consider using a kernel approximation methods. This way, not every
feature is used to construct the kernel matrix but a Monte Carlo sampling is
used to determine a fixed number of vectors. We tried this approach but were
not successful with our data set. This is not surprise since, in the same way
as with SDG, nearly all of our the training points are essential, and randomly
choosing a small percentage of them to construct the kernel matrix leads to
meaningless results.

3.3 Definition of the Curve Library

Every machine learning approach needs a set of data from which it can learn.
The choice of this data set is crucial to the performance of the classifier which
is why we discuss the di↵erent options for training sets and features in the
following subsections.

3.3.1 Parameter Sensitivity

Firstly, we investigate the sensitivity of the parameters that we introduced in
our curve the definition (see Section 3.1). We ran the adapted viability kernel
algorithm several times while always changing only one parameter and plotted
the results. This way we got a qualitative understanding on which parameters
would be suited as features and which one could be set to constant values
without changing the overall results. Naturally, the goal of this exercise was to
find as few features as possible in order to improve training times, especially
since we are using kernel methods. The reference values for the parameter used
in the analysis are the following: R = 0.35 m, ↵ = 2⇡/3, l

aug

= 0.4 m, l
ext

=0.6
m, ' = ⇡/9, and a reduction with erf(x) of 0.35%. Since, in a first step, we are
mostly interested in a real time implementation working with the ORCA track
we fix the track width to 0.3 m.

• Curve Radius R:

By changing the radius of the curve from the smallest possible (e.g
0.15m) to larger values, we see that the safe regions of the viability kernel
change. This was to be expected, since it is a parameter that has a big
influence on the shape of the curve itself. Figure 3.7 shows the viability
Kernel for three di↵erent radii and two di↵erent modes and orientations.
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Figure 3.7: Viability Kernel for di↵erent radii and modes

In Figure 3.7, the red points represent all points belonging to the safe set
in K

0 and the green points are safe point that are in K

0
aug

. Since the
latter set is merely a tool for handling the finite character of the problem,
we should only consider changes of the red points as important. Even if
the shape of the safe set changes, they do not change drastically, which
leads us to believe that when including R as a feature, SVM can classify
new curves in between of training curves. Another interesting result from
the analysis is that the changes in higher modes (e.g. higher velocities)
seem to be less significant.

• Opening angle ↵:

It seems obvious that ↵ is another parameter that should be included as
a feature, since it also changes the shape of the turn dramatically. In
Figure 3.8, three di↵erent curves for two di↵erent modes and orientations
are shown.

We see that for the small as well as for the fast velocity, the safe regions
change and move. We also see that the set changes from one continuous
set to a disconnected set.Therefore, ↵ needs to be considered as a feature
and it will be interesting to see how well the SVM handles these switches.

• augmentation length l

aug

:

The analysis of the changes for di↵erent l

aug

is important since we want
to chose it as small as possible in order to reduce computation time. The
goal here, is therefore to find out from which augmentation lengths we do
not see any changes anymore.

In the same manner as before, Figure 3.9 shows the results from the
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Figure 3.8: Viability Kernel for di↵erent ↵ and modes

adapted viability kernel for di↵erent augmentation lengths and two dif-
ferent modes and angles. We see that for the l

aug

= 0.15m and the higher
velocity, the result is clearly influenced by the shortage of the augmented
region. This can mainly be said since there are no safe points in the aug-
mented regions. In the case of l

aug

= 0.4m we see that the augmented
region regions still has safe points which allows us to conclude that all
influence by the finiteness of the problem is caught by this introduced
boundary tool.

• extension length l

ext

:

The analysis of the influence of l
ext

is merely discussed for the sake of
completeness. It does not influence computation time and could be chosen
as along as we want it to be. However, in Figure 3.10 we see that it has
to be bigger than a certain length in order not to influence the shape of
the viability kernel.

• orientation window opening angle '

w

:

The angle window is also a measure that might influence the shape of
viability kernel. However, it does not make any sense to include it as
a feature since it is an artificial design parameter that has to be fixed.
Figure 3.11 shows how the angle window changes the the results of the
adapted viability kernel.

Especially for the higher velocity and the smallest angle window we en-
countered a problem during testing. With the chosen orientations for the
car, one might assume that the points in the augmented start Section
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Figure 3.9: Viability Kernel for di↵erent l
aug

and modes

should be considered as safe. Figure 3.12 shows the case of a window
of 7.5� (orange region) and the two trims that are closest to the angle
window.

The problem the algorithm encounters is that the trims merely miss the
window in the first orientation shown (left side of Figure 3.12) . However,
when changing the orientation just a little bit, nearly all points in negative
y direction are safe again. This is due to the discrete character of the trim
method and we get an alternation between safe and unsafe for a set of
points when cycling through the orientation angle. This provokes bad
results when trying to train an SVM due to the non-continuous changes
in the safe set and does not represent the reality well. Therefore a larger
angle window should be chosen to avoid such problems.

• tightening function erf(x):

We only analyze the influence of the tightening of the curve by the error
function and set the length over which the tightening happens equal to
the augmentation length. The more we reduce the track width after the
turn, the more we restrict the path planner and influence the trajectories.
However, as discussed in Section 3.1.3, we want to somehow deal with
the uncertainty after the turn. As a result there is no evident choice of
the narrowing percentage and we merely apply an educated guess after
analyzing the viability kernel for di↵erent values. Figure 3.12 shows the
results for di↵erent reduction percentages. We can see that the safe set
in K

0 is clearly influenced by the change of the parameter and that 50 %
might be a bit too restrictive.

3.3.2 Feature Selection and Parameter Definition

With the analysis done in Section 3.3.1 we made the decision to only use R, and
↵ as extra features for the SVM, especially when keeping in mind that a larger
feature space has a severe influence on the training time. Hence the resulting
training samples are given by
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Figure 3.10: Viability Kernel for di↵erent l
ext

and modes
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i

,'

i

, v̄

i

x

(m), v̄i
y

(m), !̄i(m), Ri

,↵

i] y

i = {1, 0} i = 1, ..., N
s

(3.6)

We used v̄

i

x

(m), v̄i
y

(m), and !̄

i(m) for the velocity features instead of m since
the latter has no physical meaning and is merely an index. By using physical
parameters we can later use the SVM to also classify velocities that are not
captured by the mode discretization. For l

aug

a trade o↵ value of 0.4 m was
used and l

ext

was conservatively chosen to be 0.6 m. �

w

was fixed to 20� in
order to avoid above mentioned problems. Finally for the reduction of the error
function we made an educated guess of 35 %.

3.3.3 Reducing the Number of Training Points

The safe regions we try to classify are obviously not linear, which is the reason
why we have to apply a kernel method as described in Section 3.2.5. In order
to be as e�cient as possible in the training phase, we try to reduce the number
of training points. Another motivation for reducing the points is the fact that,
surely, not all the points carry information. Mainly, the points of interest are
the points on the boundaries of the safe regions that will later on be chosen by
the SVM as support vectors. We therefore applied an algorithm that reduces
the the set of training points in X and Y and only chose every third angle in
the orientation discretization to be included in the training set. This way, on
average, the number of points per curve could be reduced to 60% of the original
training set. The reduction algorithm takes as input a slice of the training
set (e.g. X,Y -Grid for fixed angle and velocity) and outputs only the border
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Figure 3.11: Viability Kernel for di↵erent '
w

and modes

points between the safe and unsafe regions as well as a coarser grid inside the
continuous regions. An example can be seen in Figure 3.14 where the number
of points for fixed orientation and velocity could be reduced from 205 to 143.
As before, red encircled points represent safe points while blue ones represent
unsafe points.

3.3.4 Implementation

The Curves and Grid where generated in MatLab. For the adapted viability
kernel algorithm, the existing algorithm was edited and changed in Julia. Unlike
MatLab, Julia is “just in time compiled” and o↵ers greater speed when it comes
to many iteration loops. For the training, predicting and handling of data we
chose MatLab due to it’s ease of use. Firstly we tried using only the build-in
libraries for SVM classifiers. However we discovered that the computation time
took way too long due to the interpreter based language. We therefore decided
to use the precompiled library LIBSVM [5] written in C++ that comes with
a MatLab interface. All analysis, the normalizing and the plotting where then
again done in Matlab. Figure 3.15 shows a flow chart of the process.

3.3.5 Limitations

Despite all the e↵orts of keeping the feature space as small as possible and reduc-
ing the number of training points, we ran into feasibility issues concerning the
training time. With the reduction methods applied to one single curve, e.g. only
considering (X,Y,', v̄

x

, v̄

y

, !̄), produced around 2.5 million points (depending
on the curve parameters). Traditionally, C-SVM classifiers are suited well for
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Figure 3.12: Illustration of the angle window principle

problems with 100.000 and less points which is substantially less then we have,
so for one curve we are already at the boundary of the algorithm. In order to
make the classification problem computationally feasible, we decided to drop
the velocity features. The idea is to train 127 seperate SVM’s which results in
around 3 million training points for a complete library of curves. Note that this
is not a problem in the real time phase since the path planner only considers
the discrete velocity modes. With this trick, we not only reduced the number
of points but also the feature space which is also beneficial for the computation
time, when keeping in mind that the kernel method is used.

3.3.6 Real Time Implementation

Since the goal of the Thesis is to provide a proof of concept that a realtime im-
plementation is possible when using supervised learning, we now discuss some
further points that have to been taken into consideration. With the methods
described in earlier Sections, the track constraints are not taken into consider-
ations. Although only valid points on the track were taken into consideration,
the obtained classifier could potentially classify a point o↵ track as safe. There-
fore, when the SVM is used by the path planner it has also to check the track
constraint in order to chose a viable trajectory. This could not only be done by
using methods used in [8], but another SVM could be trained that classifies a
point as being on the track or not. In that case, the path planner would have
to use both SVMs and combine them with a logical “and” in order to get the
desired safe or unsafe classification. As proof of concept, we trained an SVM on
the existing track that can be seen in Figure 3.16. As training points we created
o↵sets of the track boundaries and gridded it with some resolution. As seen
in the Figure, the SVM is able to approximate the real world track accurately.
Concerning the computation time, both methods (e.g. SVM or track projection
used in [8]) took rouhgly the same time on average.
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Figure 3.13: Viability Kernel for di↵erent reduction perc. and modes
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Figure 3.15: Left: Full set of train. points; Right: Reduced set of train. points
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Results

4.1 SVM of one Curve

To begin with, we tried training one curve with an SVM that would then give
us a continuous approximation of the viability kernel. We trained a curve with
R = 0.43m and an opening angle of ↵ = 2.3562. For training parameters we
used � = 20 and C = 20, which gave us satisfying results. The SVM was
trained with 995’372 training points which was achieved by using the reducing
algorithm from Section 3.3.3 and by taking every third angle resulting in 53
discrete orientations. The number of resulting support vectors was 99’957. The
training took 287’512 seconds on a server with average machine specs. Figure
4.1 shows the prediction of the SVM for four di↵erent modes and orientations.
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Figure 4.1: Di↵erent Predicition Results for One-Curve SVM
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Note here that the top row plots show orientations which were used in the
training set while the bottom plots show orientations that were not included.
We see in both cases that the SVM does a good job in classifying the points
rights even though eventual errors occur. As a quantitative measure we made a
cross validation by looking at how many outliers we got in the training set and
how many there are in the non-training set. Figure 4.2 shows the percentage of
misclassified points for every orientation summed up over all the modes.
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Figure 4.2: Error percentage for di↵erent '

We can see that the error is not homogeneously distributed over the orientation,
which makes sense, since the curve has some intrinsic geometric parameters that
provoke di↵erent changes of the viability kernel for di↵erent orientations.
After all, an SVM, that can only classify one curve is not that useful for our
application. However, since the SVM creates a continuous classifier over the
whole feature space, it is also possible to predict points in between the grid
points. This is especially interesting when considering the di↵erent velocity
modes which replace the velocity dynamics. As the SVM was trained with the
features v̄

x

, v̄
y

!̄ instead of the mode number, we created a way to approximate
the viability kernel over all the velocity state space. We can show that with
a disturbance on the velocity which could represent the error induced by the
mapping onto the closest mode, the SVM classifier seems to adapt the learned
safe region in the intuitive correct direction.
Figure 4.3 shows the viability kernel for mode m = 53 and ' = 1.5509 (red and
blue points) and the prediction of the SVM with a positive disturbance in the
forward velocity e.g. v

x

= v̄

x

(m = 53) + d

v

x

. The disturbance is chosen such
that the new forward velocity lies exactly in-between two modes. One can see
that some safe points are no longer in the classified safe regions of the SVM,
which makes sense since a greater forward velocity means that the car can turn
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Figure 4.3: SVM in presents of disturbance

less aggressively and possibly violates the track constraints when starting at
these critical points. Of course, these are only qualitative results since we do
not have the ground truth for that case.

4.2 Single Mode SVM

As described in Section 3.3.5 we trained an SVM for one single velocity mode
and a range of di↵erent curves. For training, 441 di↵erent curves were used
with radius ranging from 0.15 m to 0.5 m and the opening angle going from
0 to 2⇡. Each parameter was gridded uniformly resulting in 21 grid points
in each dimension. The parameters for the C-SVM were chosen � = 10 and
C = 25. For cross validation and qualitative results, we chose a velocity mode
that is in the average range of the car in real world use: m = 32. The training
took 253’857 seconds for 2’397’113 training points after reduction SVM classifier
seems to adapt the learned safe region in the intuitive correct direction. Figure
4.4 shows a variation of di↵erent curves from the training set. We see that the
SVM qualitatively performs well without making too many misclassifications.
For a more numerical analysis we check the error percentage, summed up over
all orientations for every combination of R and ↵. Figure 4.5 shows the results
for the training data. We cannot see a trend and conclude that the error is
mostly homogenous in both parameters.
However, the results we are really interested in are those that are yielded from
predicting unknown curves e.g. curves that are not included in the training set.
For this purpose we applied the viability algorithm to 25 additional curves that
are only used for cross-validation. The curves were generated by choosing a
random grid of 5 by 5 in the radius and opening angle while checking the curves
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Figure 4.4: Qualitative results of the training set for a single mode SVM

were in the original ranges of R and ↵. Fig 4.6 shows four of these curves with
di↵erent orientations.
Qualitatively, one can barely see any change from the results of the trained
curves. However, when making the same qualitative analysis as in the case of
the training set, we can see a trend of the error going upwards with increasing
radii and increasing opening angles. It is not clear if there is such a relation or
if the validation set is too small and the results miss leading.

4.2.1 Time Analysis

Since the real use case considers using the single mode SVM’s for the path plan-
ner, we tested how long it would take to evaluate a single point. We did 1’000
tests in which normalization and prediction was done and time was kept. We
got an average time of 35.8 ms with a standard deviation of 2.4 ms on a Mac-
book Pro with 2.3 GHz Intel Core i7. Two things to keep in mind here is, firstly,
the path planner should ideally run on a micro controller and not on a laptop,
and secondly, our tests were done partially in Matlab (Normalization), which
is an interpreter based programming language, and LIBSVM (prediction). The
latter uses a “mex” interface which is potentially slow, since it gives a constant
overhead. If fully deployed and compiled, the evaluation could potentially be
significantly faster.
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Figure 4.6: Qualitative results of the validation set for a single mode SVM
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Figure 4.7: Error percentage for the 25 validation curves



Chapter 5

Conclusion

In this thesis we showed that supervised learning can be used to approximate
the viability kernel. We showed that SVM is an appropriate tool for such a
problem when reducing the number of training points. On the one hand, we
showed that an SVM can be trained with the discretized viability kernel and
allows us to get a continuous approximation of the viability kernel on the whole
state space including the velocities. On the other hand, we showed that for a
fixed velocity mode, a new curve can be predicted within a certain error margin
with a minimum online computation time. Hence this could be used in a path
planner implementation.
Future work would consist in testing the learned SVM on the track and in the
controller. Further, we saw that at the moment it is not possible to learn a set
of curves with all the features (including velocity modes). In the future, a more
detailed investigation in other machine learning tools could be concluded that
may be beneficial for the training time.
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